Document Type : review article

Authors

1 Golestan University of Medical Sciences

2 Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.

10.22038/ijp.2022.66782.5005

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provokes the host immune responses and induces severe respiratory syndrome by overreaction of immune cells. IL-1β is a pro-inflammatory cytokine highly associated with the related inflammation and cytokine storm, and several IL-1β antagonists are being used to treat cytokine release syndrome (CRS). Accordingly, some studies and clinical trials are investigating the effects of IL-1β antagonists for controlling Coronavirus disease 2019 (COVID-19) associated CRS. Here, we will review any interaction and association between IL-1β and SARS-CoV-2 infection.

Keywords

  1. Tavakoli A, Vahdat K, Keshavarz M. Novel coronavirus disease 2019 (COVID-19): an emerging infectious disease in the 21st century. ISMJ. 2020; 22(6):432-50.
  2. Behboudi E, Hamidi-Sofiani V. New mutations causing the 2019 novel Coronavirus (2019-nCoV) epidemic: letter to the editor. Tehran University Medical Journal TUMS Publications. 2020; 78(3):188-.
  3. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents. 2020:105924.
  4. Zandi M, Behboudi E, Soltani S. Role of glycoprotein hemagglutinin-esterase in COVID-19 pathophysiology? Stem cell reviews and reports. 2021; 17(6):2359-60.
  5. Lam TT-Y, Shum MH-H, Zhu H-C, Tong Y-G, Ni X-B, Liao Y-S, Wei W, Cheung WYM, Li WJ, Li LF, Leung GM, Holmes EC, Hu YL, Guan Y. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. BioRxiv. 2020.
  6. Behboudi E, Hamidi-Sofiani V, Zeynali P. Review of Therapeutic Candidates for the New Coronavirus disease (COVID19). Razi Journal of Medical Sciences. 2020; 27(6):0-.
  7. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. Journal of Clinical Medicine. 2020; 9(4):1225.
  8. Behboudi E, Shamsi A, Hamidi-Sofiani V, Oladnabi M. The Effects of Fasting in Ramadan on the Risk Factors of COVID-19 in Adolescents: A Brief Review. International Journal of Pediatrics. 2021; 9(1):12835-42.
  9. Karimi M, Bolandian M, Mirzaei Nodoushan M. A Review on the Mechanisms Involved in the Immunopathogenesis of SARS-CoV-2. Journal Mil Med. 2020; 22(2):147-60.
  10. Behboudi E, Hamidi V, Gholizadeh F, Grala EM, Ghelmani Y, Nakhaie M, Charostad J, Astani A. Association between ABO blood groups and rhesus antigen and susceptibility to COVID-19 in the Yazd hospital. New Microbes and New Infections. 2021; 44:100934.
  11. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020; 395(10223):497-506.
  12. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LF. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology. 2020:1-12.
  13. Vatansever HS, Becer E. Relationship between IL-6 and COVID-19: to be considered during treatment. Future Virology. 2020(0).
  14. Li Z, Bai T, Yang L, Hou X. Discovery of potential drugs for COVID-19 based on the connectivity map. 2020.
  15. Del Valle DM, Kim-Schulze S, Hsin-hui H, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, Marron TU, Xie H, Patel M, Tuballes K, Oekelen OV, Rahman A, Kovatch P, Aberg JA, Schadt E, Jagannath S, Mazumdar M, Charney AW, Firpo-Betancourt A, Mendu DR, Jhang J, Reich D, Sigel K, Cordon-Cardo C, Feldmann M, Parekh S, Merad M, Gnjatic S. An inflammatory cytokine signature helps predict COVID-19 severity and death. medRxiv. 2020.
  16. Pacha O, Sallman MA, Evans SE. COVID-19: a case for inhibiting IL-17? Nature Reviews Immunology. 2020; 20(6):345-6.
  17. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. 2020.
  18. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, Wang M. Presumed asymptomatic carrier transmission of COVID-19. 2020; 323(14):1406-7.
  19. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. 2020; 323(14):1335-.
  20. Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. Journal of virology. 2012; 86(6):2900-10.
  21. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Frontiers in immunology. 2020; 11:1446.
  22. Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nature Reviews Immunology. 2020:1-2.
  23. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018; 101:14-8.
  24. Yang Y, Shen C, Li J, Yuan J, Yang M, Wang F, Li G, Li Y, Xing L, Peng L, Wei J, Cao M, Zheng H, Wu W, Zou R, Li D, Xu Z, Wang H, Zhang M, Zhang Z, Liu L, Liu Y. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. 2020.
  25. Ye Q, Wang B, Mao J. The pathogenesis and treatment of theCytokine Storm'in COVID-19. Journal of infection. 2020; 80(6):607-13.
  26. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of clinical investigation. 2020; 130(5).
  27. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine. 2020; 46(5):846-8.
  28. Shimizu M. Clinical Features of Cytokine Storm Syndrome. Cytokine Storm Syndrome: Springer; 2019. p. 31-41.
  29. Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, Kara T, Somers VK., editors. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clinic Proceedings; 2020: Elsevier.
  30. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020; 395(10223):507-13.
  31. Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. 2020:102567.
  32. Treon SP, Castillo J, Skarbnik AP, Soumerai JD, Ghobrial IM, Guerrera ML, Meid K, Yang G. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. 2020.
  33. Behboudi E, Hamidi-Sofiani V. CD147: A missing key in the corona virus disease-2019 (COVID-19). Health Monitor Journal of the Iranian Institute for Health Sciences Research. 2020; 19(4):467-8.
  34. Dinarello CA. A clinical perspective of IL‐1β as the gatekeeper of inflammation. European journal of immunology. 2011; 41(5):1203-17.
  35. Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, Katsyv I, Rendeiro AF, Amin AD, Schapiro D, Frangieh CJ, Luoma AM, Filliol A, Fang Y, Ravichandran H, Clausi MG, Alba GA, Rogava M, Chen SW, Ho P, Montoro DT, Kornberg AE, Han AS, Bakhoum MF, Anandasabapathy N, Suárez-Fariñas M, Bakhoum SF, Bram Y, Borczuk A, Guo XV, Lefkowitch JH, Marboe C, Lagana SM, Portillo AD, Tsai EJ, Zorn E, Markowitz GS, Schwabe RF, Schwartz RE, Elemento O, Saqi A, Hibshoosh H, Que J, Izar B. A molecular single-cell lung atlas of lethal COVID-19. Nature. 2021:1-6.
  36. Dinarello CA. Overview of the IL‐1 family in innate inflammation and acquired immunity. Immunological reviews. 2018; 281(1):8-27.
  37. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM. Vascular endothelial growth factor is upregulated by interleukin-1β in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis. 2001; 4(2):155-62.
  38. Meylan E, Tschopp J, Karin MJN. Intracellular pattern recognition receptors in the host response. 2006; 442(7098):39-44.
  39. Martinon F, Mayor A, Tschopp JJAroi. The inflammasomes: guardians of the body. 2009; 27:229-65.
  40. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA, et al. Molecular cloning of the interleukin-1 beta converting enzyme. 1992; 256(5053):97-100.
  41. Kostura M, Miller D, Molineaux S, Weidner J, Aunins J, Elliston K, et al. A Novel Heterodimeric Cysteine Protease Is Required for lnterleukin-1ß processing in Monocytes. 1992; 3:298-300.
  42. Weber A, Wasiliew P, Kracht MJSs. Interleukin-1 (IL-1) pathway. 2010; 3(105):cm1-cm.
  43. Liu PT, Schenk M, Walker VP, Dempsey PW, Kanchanapoomi M, Wheelwright M, Vazirnia A, Zhang X, Steinmeyer A, Zügel U, Hollis BW, Cheng G, Modlin RL. Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses. 2009; 4(6):e5810.
  44. Onofrio L, Caraglia M, Facchini G, Margherita V, Placido SD, Buonerba C. Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Science; 2020.
  45. Mukherjee S, Karmakar S, Babu SPS. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. The Brazilian Journal of Infectious Diseases. 2016; 20(2):193-204.
  46. Vincenti MP, Coon CI, Brinckerhoff CEJA, Rheumatology ROJotACo. Nuclear factor κB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin‐1β‐stimulated synovial fibroblasts. 1998; 41(11):1987-94.
  47. Baldwin Jr ASJAroi. The NF-κB and IκB proteins: new discoveries and insights. 1996; 14(1):649-81.
  48. Nomura YJLs. NF-κB activation and IκBα dynamism involved in iNOS and chemokine induction in astroglial cells. 2001; 68(15):1695-701.
  49. Akira S, Takeda K, Kaisho TJNi. Toll-like receptors: critical proteins linking innate and acquired immunity. 2001; 2(8):675-80.
  50. Zandi E, Chen Y, Karin MJS. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. 1998; 281(5381):1360-3.
  51. Farrow B, Evers BMJSo. Inflammation and the development of pancreatic cancer. 2002; 10(4):153-69.
  52. Hanada T, Yoshimura AJC, reviews gf. Regulation of cytokine signaling and inflammation. 2002; 13(4-5):413-21.
  53. Auron PEJC, reviews gf. The interleukin 1 receptor: ligand interactions and signal transduction. 1998; 9(3-4):221-37.
  54. Bergmann M, Hart L, Lindsay M, Barnes PJ, Newton RJJoBC. IκBα degradation and nuclear factor-κB DNA binding are insufficient for interleukin-1β and tumor necrosis factor-α-induced κB-dependent transcription Requirement for an additional activation pathway. 1998; 273(12):6607-10.
  55. Sizemore N, Leung S, Stark GRJM, biology c. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. 1999; 19(7):4798-805.
  56. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, Guo D, Hu W, Yang J, Tang Z, Wu H, Lin Y, Zhang M, Zhang Q, Shi M, Liu Y, Zhou Y, Lan K, Chen Y. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020; 9(1):761-70.
  57. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020; 395(10223):497-506.
  58. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, Ntaganou M, Kyriakopoulou M, Dimopoulos G, Koutsodimitropoulos I, Velissaris D, Koufargyris P, Karageorgos A, Katrini K, Lekakis V, Lupse M, Kotsaki A, Renieris G, Theodoulou D, Panou V, Koukaki E, Koulouris N, Gogos C, Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host & Microbe. 2020; 27(6):992-1000.e3.
  59. Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell death discovery. 2019; 5:101.
  60. Siu K-L, Yuen K-S, Castaño-Rodriguez C, Ye Z-W, Yeung M-L, Fung S-Y, Yuan S, Chan CP, Yuen KY, Enjuanes L, Jin DY. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 2019; 33(8):8865-77.
  61. Chen I-Y, Moriyama M, Chang M-F, Ichinohe T. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. 2019; 10(50).
  62. Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annual review of medicine. 2015; 66:145-59.
  63. Schulert GS, Grom AA. Macrophage activation syndrome and cytokine-directed therapies. Best practice & research Clinical rheumatology. 2014; 28(2):277-92.
  64. Pugin J, Ricou B, Steinberg KP, Suter PM, Martin TR. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. American journal of respiratory and critical care medicine. 1996; 153(6 Pt 1):1850-6.
  65. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR open rheumatology. 2020; 2(5):276-82.
  66. Wampler Muskardin TL. Intravenous Anakinra for Macrophage Activation Syndrome May Hold Lessons for Treatment of Cytokine Storm in the Setting of Coronavirus Disease 2019. ACR open rheumatology. 2020; 2(5):283-5.
  67. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet. 2020; 395(10223):473-5.
  68. Lu X, Chen T, Wang Y, Wang J, Yan F. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Critical Care. 2020; 24(1):1-4.
  69. van de Veerdonk FL, Netea MG. Blocking IL-1 to prevent respiratory failure in COVID-19. Critical Care. 2020; 24(1):1-6.
  70. Eloseily EM, Weiser P, Crayne CB, Haines H, Mannion ML, Stoll ML, Beukelman T, Atkinson TP, Cron RQ. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis & Rheumatology. 2020; 72(2):326-34.
  71. Cobb MH, Goldsmith EJ. How MAP kinases are regulated. The Journal of biological chemistry. 1995; 270(25):14843-6.
  72. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM. Vascular endothelial growth factor is upregulated by interleukin-1β in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. 2001; 4(2):155-62.
  73. Arend WPJC, reviews gf. The balance between IL-1 and IL-1Ra in disease. 2002; 13(4-5):323-40.
  74. Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott MF, Oksenberg J, McNicholl J, Pociot F, Hardt C, D'Alfonso S. Cytokine gene polymorphism in human disease: on-line databases. Genes and immunity. 1999; 1(1):3-19.
  75. El-Omar EM, Carrington M, Chow W-H, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF, Rabkin CS. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. 2000; 404(6776):398-402.
  76. Chen H, Wilkins LM, Aziz N, Cannings C, Wyllie DH, Bingle C, Rogus J, Beck JD, Offenbacher S, Cork MJ, Rafie-Kolpin M, Hsieh CM, Kornman KS, Duff GW. Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. 2006; 15(4):519-29.
  77. Dinarello CA, Ikejima T, Warner S, Orencole S, Lonnemann G, Cannon JG, Libby P. Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. 1987; 139(6):1902-10.
  78. Granowitz EV, Clark BD, Vannier E, Callahan MV, Dinarello CA. Effect of interleukin-1 (IL-1) blockade on cytokine synthesis: I. IL-1 receptor antagonist inhibits IL-1-induced cytokine synthesis and blocks the binding of IL-1 to its type II receptor on human monocytes. 1992.
  79. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, Van Der Meer JH, Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, Funk CJ, Mason RJ, Kullberg BJ, Rubartelli A, Meer JWM, Dinarello CA. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. 2009; 113(10):2324-35.
  80. Tartakovsky B, Kovacs E, Takacs L, Durum SJTJoI. T cell clone producing an IL 1-like activity after stimulation by antigen-presenting B cells. 1986; 137(1):160-6.
  81. Hoffmann E, Thiefes A, Buhrow D, Dittrich-Breiholz O, Schneider H, Resch K, Kracht M. MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-κB-mediated interleukin-8 transcription in response to cytokines or growth factors. 2005; 280(10):9706-18.
  82. Bandman O, Coleman RT, Loring JF, Seilhamer JJ, Cocks BGJAotNYAoS. Complexity of inflammatory responses in endothelial cells and vascular smooth muscle cells determined by microarray analysis. 2002; 975(1):77-90.
  83. Holzberg D, Knight CG, Dittrich-Breiholz O, Schneider H, Dörrie A, Hoffmann E, Resch K, Kracht M. Disruption of the c-JUN-JNK complex by a cell-permeable peptide containing the c-JUN δ domain induces apoptosis and affects a distinct set of interleukin-1-induced inflammatory genes. 2003; 278(41):40213-23.
  84. Pharoah PD, Dunning AM, Ponder BA, Easton DFJNRC. Association studies for finding cancer-susceptibility genetic variants. 2004; 4(11):850-60.
  85. Coussens LM, Werb ZJN. Inflammation and cancer. 2002; 420(6917):860-7.
  86. Schottenfeld D, Beebe‐Dimmer JJCacjfc. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. 2006; 56(2):69-83.
  87. Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1β. Cytokine & Growth Factor Reviews. 2002; 13(6):483-502.
  88. Dinarello CAJTJoem. Blocking IL-1 in systemic inflammation. 2005; 201(9):1355-9.
  89. Dinarello CAJA, Rheumatism. The many worlds of reducing interleukin‐1. 2005; 52(7):1960-7.
  90. Semenza GLJCrib, biology m. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. 2000; 35(2):71-103.
  91. Lisi S, D’Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunology letters. 2014; 162(1):159-69.
  92. Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacologica Sinica. 2020; 41(12):1539-46.
  93. Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, Cao J, Jiang W, Xu Y, Dong J, Ren H. Hypoxia inducible factor 1 (HIF-1) recruit’s macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. International journal of molecular sciences. 2016; 17(6):799.
  94. Balkwill F, Mantovani AJTl. Inflammation and cancer: back to Virchow? 2001; 357(9255):539-45.
  95. Fang HY, Lin T-S, Lin J-P, Wu Y, Chow K-C, Wang L-SJEJoSO. Cyclooxygenase-2 in human non-small cell lung cancer. 2003; 29(2):171-7.
  96. Kovacs SB, Miao EAJTicb. Gasdermins: effectors of pyroptosis. 2017; 27(9):673-84.
  97. Walle LV, Lamkanfi MJCB. Pyroptosis. 2016; 26(13):R568-R72.
  98. Wu D, Wang S, Yu G, Chen X. Cell Death Mediated by the Pyroptosis Pathway with the Aid of Nanotechnology: Prospects for Cancer Therapy. Angewandte Chemie International Edition. 2021; 60(15):8018-34.
  99. Emadi MS, Soltani S, Noori B, Zandi M, Shateri Z, Tabibzadeh A, Behboudi E, Erfani Y, Tabaeian SP, Pourhossein B, Didehdar M. Highly Conserve Sequences in Envelope, Nucleoprotein and RNA-Dependent RNA Polymerase of SARS-CoV-2 in Nasopharyngeal Samples of the COVID-19 Patients; a Diagnostic Target for Further Studies. Journal of Cellular & Molecular Anesthesia. 2022; 7(2):78-83.
  100. Bibo-Verdugo B, Snipas SJ, Kolt S, Poreba M, Salvesen GS. Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. Journal of Biological Chemistry. 2020; 295(32):11292-302.
  101. He W-t, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. 2015; 25(12):1285-98.
  102. Yap JK, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. The Journal of Immunology. 2020; 205(2):307-12.
  103. Rana MM. Cytokine storm in COVID-19: Potential therapeutics for immunomodulation. 2020; 8(1):38-.
  104. Shah FH, Lim KH, Kim SJ. Do fever-relieving medicines have anti-COVID activity: an in silico insight. Future Virology. 2021; 16(4):293-300.
  105. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. 2020; 11(1708).
  106. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical Rheumatology. 2020:1.
  107. Ingraham NE, Lotfi-Emran S, Thielen BK, Techar K, Morris RS, Holtan SG, Dudley RA, Tignanelli CJ. Immunomodulation in COVID-19. The Lancet Respiratory Medicine. 2020; 8(6):544-6.
  108. Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I, Kritas S. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. 2020; 34(2):1.
  109. Cavalli G, Dagna L. The right place for IL-1 inhibition in COVID-19. The Lancet Respiratory Medicine. 2021; 9(3):223-4.
  110. Conti P, Caraffa A, Gallenga C, Ross R, Kritas S, Frydas I, Younes A, Ronconi G. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. J Biol Regul Homeost Agents. 2020; 34(6):1971-5.
  111. Cavalli G, Larcher A, Tomelleri A, Campochiaro C, Della-Torre E, De Luca G, Farina N, Boffini N, Ruggeri A, Poli A, Scarpellini P, Rovere-Querini P, Tresoldi M, Salonia A, Montorsi F, Landoni G, Castagna A, Ciceri F, Zangrillo A, Dagna L. Interleukin-1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: a cohort study. The Lancet Rheumatology. 2021; 3(4):e253-e61.
  112. van de Veerdonk FL, Netea MG. Blocking IL-1 to prevent respiratory failure in COVID-19. Critical Care. 2020; 24(1):445.
  113. van de Veerdonk FL, Netea MGJCC. Blocking IL-1 to prevent respiratory failure in COVID-19. 2020; 24(1):1-6.
  114. Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Medical hypotheses. 2020; 143:109906.
  115. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, Sacco E, Naccache JM, Bézie Y, Laplanche S, Berre AL, Pavec JL, Salmeron S, Emmerich J, Mourad JJ, Chatellier G, Hayem G. Anakinra for severe forms of COVID-19: a cohort study. The Lancet Rheumatology. 2020; 2(7):e393-e400.
  116. https://en.irct.ir/trial/48702.
  117. https://clinicaltrials.gov/ct2/history/NCT04462757?V_3=View.
  118. Tharaux P-L, Pialoux G, Pavot A, Mariette X, Hermine O, Resche-Rigon M, et al. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. The Lancet Respiratory Medicine. 2021; 9(3):295-304.
  119. Parisi V, Leosco D. Precision medicine in COVID-19: IL-1β a potential target. Basic to Translational Science. 2020; 5(5):543-4.
  120. clinicaltrials.gov/ct2/show/NCT04362813. Clinicaltrialsgov/ct2/show/NCT04362813.
  121. https://www.bioworld.com/articles/499859-canakinumab-flunks-phase-iii-trial-in-covid-19.
  122. www.nejm.org/doi/full/10.1056/NEJMoa2027892.