Document Type : original article


1 Pediatric Department, Faculty of Medicine, Minia University

2 Clinical pathology department, Faculty of Medicine, Minia University

3 Microbiology and immunology department ,faculty of pharmacy ,Deraya University,Minia,Egypt

4 Medical Microbiology and Immunology Department , Faculty of Medicine, Minia University

5 Pediatric departement ,Faculty of medicine , Minia univeristy



Background: Since the beginning of COVID-19 pandemic, several studies have reported increased type 1 diabetes (T1D) and severe diabetic ketoacidosis (DKA) in children. Recent studies have linked viruses to T1D due to their autoimmune nature. SARS-CoV-2 infection may cause hyperglycemia and DKA. In this study we aimed to evaluate the incidence of DKA in pediatric patients with T1D during the initial COVID-19 pandemic and the years preceding it.
Methods: The present study is a retrospective observational investigation conducted at Minia University Hospital's Pediatric Intensive Care Unit (PICU). Children diagnosed with T1D who recently had SARS-CoV-2, as validated by laboratory testing with the RT-PCR method, were included in the study. The cases referred to during the period from March 2020 to February 2022, which coincided with the pandemic, were compared with those newly diagnosed with diabetes and presented with DKA from March 2018 to February 2020, the pre-pandemic phase. Comparisons were made on the incidence, frequency, and diagnostic criteria.
Results: During the pandemic period, we admitted 212 cases of new‐onset T1D. Of these, 159 (75%) patients had DKA, and 53 (25%) had hyperglycemia. Comparing the pre-pandemic with the pandemic period, we noted that the number of children identified with T1D had risen from 4.99/100,000children per year in pre-pandemic periods to 8.46 /100 000 PY in the pandemic period with an incidence rate ratio (IRR) of 6.25 (95% CI 2.90 to 7.83); p<0.0001.
Conclusion: COVID-19 pandemic has caused a rise in the number of children with newly diagnosed diabetes, and more people with newly diagnosed diabetes are now presenting with severe DKA.


  1. Papadokostaki E., Tentolouris N., Liberopoulos E. COVID-19 and diabetes: what does the clinician need to know? Primary Care Diabetes. 2020; 14(5):558–563. doi: 10.1016/j.pcd.2020.06.010.
  2. Dong Y., Dong Y., Mo X., Hu Y., Qi X., Jiang F. Epidemiology of COVID-19 among children in China. Pediatrics. 2020; 145(6) doi: 10.1542/peds.2020-0702.
  3. De Wilde A. H., Eric J., Snijder M. K., Van M. J. Assessment & Evaluation in Higher Education. New York, NY, USA: Springer International Publishing; 2012. Host factors in coronavirus replication; p. p. 435. Available from:
  4. She J., Liu L., Liu W. COVID-19 epidemic: disease characteristics in children. Journal of Medical Virology. 2020; 92(7):747–754. doi: 10.1002/jmv.25807.
  5. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17, 543–558 (2020).
  6. Mohamad IL, Saad K, Abdel-Azeem A, Mohamed SAA, Othman HAK, Abdel Baseer KA, Thabet AF, El-Houfey AA. Evaluation of pulmonary function changes in children with type 1 diabetes mellitus in Upper Egypt. Ther. Adv. Endocrinol. Metab. 6, 87–91 (2015).
  7. Wolfsdorf JI, Glaser N, Agus M, Fritsch M, Hanas R, Rewers A, Sperling MA, Codner E. ISPAD Clinical Practice Consensus Guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr. Diabetes 19, 155–177 (2018).
  8. Evans, K. Diabetic ketoacidosis: update on management. Clin. Med. J. R. Coll. Physicians Lond. 19, 396–398 (2019).
  9. Chen Y., Gong X., Wang L., Guo J. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis MedRxiv. 2020. p. p. 280.
  10. Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, Boehm B, Amiel S, Holt RI, Skyler JS, DeVries JH, Renard E, Eckel RH, Zimmet P, Alberti KG, Vidal J, Geloneze B, Chan JC, Ji L, Ludwig B. Practical recommendations for the management of diabetes in patients with COVID-19. The Lancet Diabetes & Endocrinology. 2020; 8(6):546–550. doi: 10.1016/s2213-8587(20)30152-2.
  11. Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, Mingrone G, Boehm B, Cooper ME, Chai Z, Del Prato S, Ji L, Hopkins D, Herman WH, Khunti K, Mbanya JC, Renard E. New-onset diabetes in COVID-19. The New England Journal of Medicine. 2020; 383(8):787–789. doi: 10.1056/NEJMc2018688.
  12. Unsworth R, Wallace S, Oliver NS, Yeung S, Kshirsagar A, Naidu H, Wai Kwong RM, Kumar P, Logan KM. New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the UK. Diabetes Care. 2020; 43(11):e170–e171. doi: 10.2337/dc20-1551.
  13. Sathish T., Cao Y., Kapoor N. Newly diagnosed diabetes in COVID-19 patients. Primary Care Diabetes. 2020; 15(1):p. 194. doi: 10.1016/j.pcd.2020.08.014.
  14. Jie Y., Jia S., Ng H., Yeoh E. Diabetic ketoacidosis precipitated by COVID-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Research and Clinical Practice. 2020; 164 doi: 10.1016/j.diabres.2020.108166.108166
  15. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020 Apr; 8(4):e21. doi: 10.1016/S2213-2600(20)30116-8. Epub 2020 Mar 11. Erratum in: Lancet Respir Med. 2020 Jun; 8(6):e54. PMID: 32171062; PMCID: PMC7118626.
  16. Clemens KS, Matkovic J, Faasse K, Geers AL. Determinants of safety-focused product purchasing in the United States at the beginning of the global COVID-19 pandemic. Saf Sci. 2020 Oct; 130:104894. doi: 10.1016/j.ssci.2020.104894. Epub 2020 Jun 29. PMID: 32834513; PMCID: PMC7324098.
  17. Kamrath C, Mönkemöller K, Biester T, Rohrer TR, Warncke K, Hammersen J, Holl RW. Ketoacidosis in Children and Adolescents with Newly Diagnosed Type 1 Diabetes during the COVID-19 Pandemic in Germany. JAMA. 2020 Aug 25; 324(8):801-804. doi: 10.1001/jama.2020.13445. PMID: 32702751; PMCID: PMC7372511.
  18. Lawrence C, Seckold R, Smart C, King BR, Howley P, Feltrin R, Smith TA, Roy R, Lopez P. Increased pediatric presentations of severe diabetic ketoacidosis in an Australian tertiary center during the COVID-19 pandemic. Diabet Med. 2021 Jan; 38(1):e14417. doi: 10.1111/dme.14417. Epub 2020 Oct 23. PMID: 33020999; PMCID: PMC7646057.
  19. Elbarbary NS, Dos Santos TJ, de Beaufort C, Agwu JC, Calliari LE, Scaramuzza AE. COVID-19 outbreak and pediatric diabetes: Perceptions of health care professionals worldwide. Pediatr Diabetes. 2020 Nov; 21(7):1083-1092. doi: 10.1111/pedi.13084. Epub 2020 Aug 17. PMID: 32686287; PMCID: PMC7404589.
  20. Gottesman, B. L., Yu, J., Tanaka, C., Longhurst, C. A. & Kim, J. J. Incidence of new- onset type 1 diabetes among US children during the COVID-19 global pandemic. JAMA Pediatr. 176, 414–415 (2022).
  21. Rabbone I, Schiaffini R, Cherubini V, Maffeis C, Scaramuzza A; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Has COVID-19 Delayed the Diagnosis and Worsened the Presentation of Type 1 Diabetes in Children? Diabetes Care. 2020 Nov; 43(11):2870-2872. doi: 10.2337/dc20-1321. Epub 2020 Aug 10. PMID: 32778554.
  22. Tittel SR, Rosenbauer J, Kamrath C, Ziegler J, Reschke F, Hammersen J, Mönkemöller K, Pappa A, Kapellen T, Holl RW; DPV Initiative. Did the COVID-19 Lockdown Affect the Incidence of Pediatric Type 1 Diabetes in Germany? Diabetes Care. 2020 Nov; 43(11):e172-e173. doi: 10.2337/dc20-1633. Epub 2020 Aug 21. PMID: 32826282; PMCID: PMC7576433.
  23. Atlas G, Rodrigues F, Moshage Y, Welch J, White M, O'Connell MA. Presentation Of Pediatric Type 1 Diabetes In Melbourne, Australia During The Initial Stages Of The Covid-19 Pandemic. J Paediatr Child Health. 2020 Oct; 56(10):1654-1655. doi: 10.1111/jpc.15081. Epub 2020 Sep 22. PMID: 32959935; PMCID: PMC7537060.
  24. Parviainen A, But A, Siljander H, Knip M; Finnish Pediatric Diabetes Register. Decreased Incidence of Type 1 Diabetes in Young Finnish Children. Diabetes Care. 2020 Dec; 43(12):2953-2958. doi: 10.2337/dc20-0604. Epub 2020 Sep 30. PMID: 32998988.
  25. Shi TT, Yang FY, Liu C, Cao X, Lu J, Zhang XL, Yuan MX, Chen C, Yang JK. Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells. Biochem Biophys Res Commun. 2018 Jan 1; 495(1):860-866. doi: 10.1016/j.bbrc.2017.11.055. Epub 2017 Nov 9. PMID: 29128354.
  26. Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffré F, Zhang T, Kim TW, Harschnitz O, Redmond D, Houghton S, Liu C, Naji A, Ciceri G, Guttikonda S, Bram Y, Nguyen DT, Cioffi M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Borczuk A, Chen HJ, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell. 2020 Jul 2; 27(1):125-136.e7. doi: 10.1016/j.stem.2020.06.015. Epub 2020 Jun 19. PMID: 32579880; PMCID: PMC7303620.
  27. Hasan NM, Kendrick MA, Druckenbrod NR, Huelsmeyer MK, Warner TF, MacDonald MJ. Genetic association of the neuropilin-1 gene with type 1 diabetes in children: Neuropilin-1 expression in pancreatic islets. Diabetes Res Clin Pract. 2010 Mar; 87(3):e29-32. doi: 10.1016/j.diabres.2009.12.016. Epub 2010 Jan 6. PMID: 20053475.
  28. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020 Nov 13; 370(6518):856-860. doi: 10.1126/science.abd2985. Epub 2020 Oct 20. PMID: 33082293; PMCID: PMC7857391.
  29. Wolfsdorf JI, Allgrove J, Craig ME, Edge J, Glaser N, Jain V, Lee WW, Mungai LN, Rosenbloom AL, Sperling MA, Hanas R; International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical Practice Consensus Guidelines 2014. Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes. 2014 Sep; 15 Suppl 20:154-79. doi: 10.1111/pedi.12165. Epub 2014 Jul 12. PMID: 25041509.
  30. Cherubini V, Gohil A, Addala A, Zanfardino A, Iafusco D, Hannon T, Maahs DM. Unintended Consequences of Coronavirus Disease-2019: Remember General Pediatrics. J Pediatr. 2020 Aug; 223:197-198. doi: 10.1016/j.jpeds.2020.05.004. Epub 2020 May 8. PMID: 32437758; PMCID: PMC7207102.
  31. Rostami A, Sepidarkish M, Leeflang MMG, Riahi SM, Nourollahpour Shiadeh M, Esfandyari S, Mokdad AH, Hotez PJ, Gasser RB. SARS-CoV-2 seroprevalence worldwide: a systematic review and meta-analysis. Clin Microbiol Infect. 2021 Mar; 27(3):331-340. doi: 10.1016/j.cmi.2020.10.020. Epub 2020 Oct 24. PMID: 33228974; PMCID: PMC7584920.
  32. Crawley E, Loades M, Feder G, Logan S, Redwood S, Macleod J. Wider collateral damage to children in the UK because of the social distancing measures designed to reduce the impact of COVID-19 in adults. BMJ Paediatr Open. 2020 May 4; 4(1):e000701. doi: 10.1136/bmjpo-2020-000701. PMID: 32420459; PMCID: PMC7223269.